# POZNAN UNIVERSITY OF TECHNOLOGY



Course name

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

# **COURSE DESCRIPTION CARD - SYLLABUS**

#### Thin films [S1IMat1>CW] Course Field of study Year/Semester Materials Engineering 3/6 Area of study (specialization) Profile of study general academic Level of study Course offered in first-cycle polish Form of study Requirements full-time elective Number of hours Lecture Laboratory classes Other (e.g. online) 15 0 0 Tutorials Projects/seminars 0 0 Number of credit points 2.00 Coordinators Lecturers dr hab. Izabela Szafraniak-Wiza prof. PP izabela.szafraniak-wiza@put.poznan.pl

#### **Prerequisites**

Knowledge: Basic knowledge of chemistry, physics and materials science. Skills: Logical thinking, use of the information obtained from library and Internet. Social competencies: Understanding the need for learning and acquiring new knowledge

# **Course objective**

The knowledge of thin film concepts and their depositions, properties and applications.

#### Course-related learning outcomes

Knowledge:

the student has knowledge about the needs of thin film applications in modern industry.k\_w08 k\_w10 the student has knowledge about thin film depositions. k\_w01 k\_w08

Skills:

the student can propose the applications of thin films in modern industry.  $k_u01$ ,  $k_u02$ ,  $k_u12$  the student can choose the proper thin films depositions for specific requirements.  $k_u01$ ,  $k_u02$ ,  $k_u12$ 

Social competences:

the student can collaborate in order to obtain and implement the new knowledge. k\_k03 the student is aware of importance of nanotechnology in modern science, industry and society. k\_k02

## Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows:

Lectures:

Written test at the end of the semester

Projects:

The final report prepared according to lecturer's guidelines.

## **Programme content**

1.Basic concepts of thin films

- 2. Applications of thin films in industry
- 3.Epitaxial thin films
- 4. Thin film growth modes
- 5. Typical substrates for thin film depositions
- 6.Physical methods of thin film depositions (evaporations, PLD, sputtering).
- 7. Chemical methods of thin film depositions (MOCVD, sol-gel, hydrothermal method).

## **Teaching methods**

1. Lecture: multimedia presentation.

2. Laboratory exercises: performing exercises, discussion, team work.

## Bibliography

Basic

- 1. Nanomateriały inżynierskie, K. Kurzydłowski, M. Lewandowska (red.), PWN 2010
- 2. Wstęp do fizyki ciała stałego, Kittel C., PWN, Warszawa, 1999
- 3. Nanoelectronics and Information Technology, Waser R., Wiley-VCH, Berlin, 2003
- 4. Nanotechnologie, R.W. Kelsall, I.W. Hamley, M. Goeghegan (red.), PWN, 2008

Additional

- 1. Oleś, Metody doświadczalne fizyki ciała stałego, WNT 1998
- 2. Handbook of thin film devices, M. H. Francombe (red.), Acad. Press, San Diego, 2000
- 3. scientific papers

#### Breakdown of average student's workload

|                                                                                                                                            | Hours | ECTS |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| Total workload                                                                                                                             | 60    | 2,00 |
| Classes requiring direct contact with the teacher                                                                                          | 30    | 1,00 |
| Student's own work (literature studies, preparation for laboratory classes/<br>tutorials, preparation for tests/exam, project preparation) | 15    | 1,00 |